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A computational chemistry study has been performed on a series of tetrahydropyrimidine-2-
ones (THPs) as HIV-1 protease (HIV-1 PR) inhibitors. The present investigation focuses on
the correlation of inhibitor—enzyme complexation energies (Ecompi), inhibitor solvation energies
Esn[1], and both polar and nonpolar buried surface areas (BSAs) with the observed values of
the binding affinity (pK,). Various combinations of these specific inhibitor- and receptor-based
properties were also evaluated as additional descriptors to three-dimensional quantitative
structure—activity relationship (3D-QSAR) models constructed using comparative molecular
field analysis (COMFA). Linear regression of the observed pK; values with Ecmpi, Eson[l], @and
the BSAs yielded a strong correlation in terms of both self-consistency (r? ~ 0.90) and internal
predictive ability (r,2 > 0.50). The 3D-QSAR models obtained from CoMFA using standard
partial least-squares (PLS) analysis also yielded a strong correlation between the CoMFA fields
and the experimental pK; (r> = 0.96; r.? = 0.58). Various “enhanced” 3D-QSAR models were
constructed in which different combinations of the Ecmp, Eson[l], and BSAs were added as
additional descriptors to the default steric—electrostatic COMFA fields. Inclusion of Es[l] in
particular yielded significant improvement in the predictive ability (r.,?> ~ 0.80) of the resultant

3D-QSAR model.

Introduction

HIV-1 protease (HIV-1 PR) plays a key role in the
post-translational processing of gag and gag-pol viral
gene products and thereby is essential for virion matu-
ration.1? Consequently, HIV-1 PR is an attractive target
for developing anti-AIDS drugs because its inhibition
results in the production of noninfectious virus.3-¢ Many
HIV-1 PR inhibitors, including indinavir, nelfinavir,
saquinavir, and ritonavir, have been approved as anti-
AIDS drugs.®’ These drugs were found to be very useful
in reducing the viral load and improving the CD4 cell
counts in AIDS patients. However, rapid emergence of
drug resistance has been reported for almost all protease
inhibitors currently in clinical use due to site-specific
mutations in the enzyme.”~° The bioavailability and
toxicity profiles of protease inhibitors are also of im-
portance; thus, there exists an urgent need to discover
a new generation of protease inhibitors that are more
potent against these mutant forms of the virus and, at
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the same time, that exhibit low toxicity and high
bioavailability.

Various computational methods, including, for ex-
ample, a priori prediction of enzyme—inhibitor binding
affinities’®1® and free energy perturbation (FEP)
methods,1”~19 have been successfully employed to help
guide the rational design and optimization of novel
HIV-1 PR inhibitors. Previous studies in our labora-
tory® have shown that enzyme—inhibitor complexation
energies calculated using molecular mechanics can
provide an efficient and highly useful approach for the
rational design of new inhibitor candidates and for rapid
screening of moderately sized ligand databases. Three-
dimensional quantitative structure—activity relation-
ship (3D-QSAR) methods such as comparative molecular
field analysis (CoMFA) are also useful in the rapid
prediction of the binding affinities of new inhibitor
candidates.16:20-22 CoMFA is a versatile and powerful
tool in rational drug design and related applications.
CoMFA samples the steric and electrostatic fields sur-
rounding a set of ligands and constructs a 3D-QSAR
model by correlating these 3D steric and electrostatic
fields with the corresponding observed activities. One
of the unique features of CoMFA is its ability to
represent the 3D-QSAR model in terms of color contour
maps that depict locations on the ligands where struc-
tural modifications might enhance their biological activ-
ity (e.g., binding affinity). These maps can serve as
guides for designing analogues within the same series
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of compounds that might possess more desirable biologi-
cal properties.

The present study reports a computational study of
a series of six-membered cyclic ureas known as tetrahy-
dropyrimidine-2-ones (THPs) for use as HIV-1 PR
inhibitors. Our primary aim was to explore the utility
of calculated enzyme—inhibitor complexation energies
(Ecompt) as well as inhibitor buried surface areas (BSAs)
and inhibitor solvation energies (Esoy) as descriptors for
predicting experimental enzyme inhibition constants.
An additional aim was to evaluate whether the statisti-
cal quality of standard CoMFA models could be im-
proved, and to what degree, by inclusion of these
property values as additional descriptors. Various CoM-
FA models were developed by including the complex-
ation energies, BSAs, and solvation energies in various
combinations as additional descriptors to improve the
model’'s predictive ability. Such “enhanced” CoMFA
models can be used to predict the activity of new
inhibitors, and the CoMFA contour maps are extremely
useful as visual guides in the rational design of new
inhibitors.

Computational Methods

Complexation Energies. The binding of an inhibitor (I)
to HIV-1 protease (PR) to form the enzyme—inhibitor complex
(PR—1) can be represented by the following equilibrium:

PR+ | =PR-I 1)

The complexation energy (Ecmp) Of an inhibitor for this
reversible inhibition process can be calculated from the ener-
gies of the free enzyme E[PR], the free inhibitor E[l], and the
enzyme—inhibitor complex E[PR—I] employing the relation

Ecompt = E[PR—1] — (E[PR] + E[I]) )

Values of E[PR], E[l], and E[PR—I] were obtained from
molecular mechanics minimization using the consistent va-
lence force field (CVFF) and default partial atomic charges
available within the Insightll/Discover molecular modeling
package.?® The dielectric shielding in proteins was accounted
for by setting the dielectric constant ¢ equal to 4, and the
nonbonded energy cutoff was set to « (i.e., no cutoff). Energy
minimization of the enzyme—inhibitor complexes and of the
free enzyme was carried out gradually in steps, viz., only
hydrogens initially, then only the side chains, and finally full
relaxation of all atoms in the system. This procedure was
utilized to minimize unrealistic motions of the protein arising
from computational artifacts. In all cases, geometry optimiza-
tion was performed starting with 200 cycles of steepest descent
followed by conjugate gradient energy minimization until a
convergence criterion of 0.01 kcal mol~* A-1 for the average
energy gradient between successive iterations was achieved.
The enzyme structure employed for the calculation was the
Insightll/Delphi coordinate file kindly provided by Perez et
al.'! The two active-site aspartate residues A25 and B25 were
modeled as protonated and unprotonated, respectively, in
accordance with experimental observations.® The structural
“flap” H,O molecule located within the ligand binding site was
removed because the carbonyl group within the cyclic urea
moiety of this series of THPs mimic is intended to mimic the
oxygen atom of this water molecule by forming hydrogen-
bonding interactions with the backbone NH groups of Ile A50
and lle B50. Inhibitor binding will displace and, presumably,
induce release of this H,O molecule to the bulk aqueous
environment, thus providing an additional favorable entropic
contribution to the free energy of binding.

Buried Surface Area. The buried surface area (BSAt) of
a bound ligand inside the active site of the enzyme has been
shown in various applications® to give insight into the free
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energy of binding. The BSA: can be partitioned into polar
buried surface area (BSApo) and nonpolar buried surface area
(BSAnNonpot). The values of BSApy and BSAnonror are useful,
respectively, for quantifying the relative contribution of polar
vs nonpolar interactions to enzyme—ligand binding. The BSAs
were computed from the solvent-accessible surface areas
(SASAs) of each free inhibitor (SASA[I]), the free enzyme
(SASA[PRY]), and each enzyme—inhibitor complex (SASA[PR—
11) using the following equations:

BSA o = SASA,[PR] + SASA[[I] — SASA[PR-1] (3)
BSApy = SASAL,[PR] + SASA.[I] — SASAL,[PR—I] (4)

BSANonPoI = SASANonPoI[PR] + SASANonPoI[I] -
S'O‘SANonPoI[PR_I] (5)

The subscripts Tot, Pol, and NonPol indicate the total, polar,
and nonpolar components of the surface area, respectively.
Values of SASA for all molecular species were calculated using
the ProStat option in the homology module of the Insight 11
modeling package.?® ProStat provides a set of protein structure
analysis functions and allows the computation of the absolute
per residue solvent-accessible surface area or that relative to
the Gly-X-Gly tripeptide model.

Solvation Energy. Inclusion of solvent effects in the
theoretical prediction of inhibition constants should be ex-
pected to improve the predictability of the regression model.
The solvation energy Esqy associated with formation of the
ligand—enzyme complex (eq 1) is given by the expression

E solv[PR] + Esolv [I]) (6)

solv — Esolv[PR_I] - (E
where the individual terms are defined by analogy to eq 2.
Preliminary calculations revealed that differences between
Eson[PR—1] and Es[PR] are fairly constant across a series of
structurally related inhibitors so that, according to eq 6, Esov
scales almost monotonically with Esu[l]. Accordingly, it was
concluded that Egq[1] aptly serves as a surrogate for Esy at
little cost in accuracy and with appreciable gain in computa-
tional speed. In fact, the present results show that Egn[l]
correlated quite strongly with inhibition constants for this
series of THP compounds.

When the GB/SA (generalized Born/surface area) method
and MMFF (Merck molecular force field) contained within the
Macromodel 6.0 modeling package were used,? values of Eso
[1] were calculated by the following expression:

Esonlll = EMMFFwat[I] - EMMFFGaS[I] (7)

where EpveeVa[1] and Euuee®2[1] are the geometry-optimized
energy of the free (i.e., unbound) inhibitor in water and in the
gas phase, respectively. Computation of Egq[I] with inclusion
of energy minimization will be superior to the corresponding
single-point calculation (i.e., no energy minimization) because
it includes the strain energy associated with solvation and
desolvation of the free inhibitor.

Comparative Molecular Field Analysis (CoMFA). The
CoMFA module was accessed using Sybyl, version 6.6,% and
partial atomic charges were calculated using the Gasteiger—
Marsili?® formalism. Each inhibitor molecule was first opti-
mized inside the binding pocket of the enzyme to obtain the
putative bioactive conformation, then aligned using mole-
cule 1 (see Table 1) as a template. Molecular alignment
(superimposition) was carried out using the atom fit option
in Sybyl with respect to the central six-membered ring core
of the molecules. This six-membered ring was present in
every compound within this series of THP inhibitors, thus
making the alignment procedure a more straightforward
process.

The CoMFA region was defined to extend 5 A beyond the
van der Waals radii of the assembly of superimposed mol-
ecules, along each of the principal axes of a Cartesian
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Table 1. Inhibition Constants (pK;) from Experiment and from Linear Regression Models I-VII12 Involving Ecompi, Esoiv[[l], BSApol,
and BSAnonrol for the Training Set Inhibitors

Compound PKi pKi (predicted)
No. Structure (exp.) 1 I 1T v \4 A VII  VIII
1 Is}
O I ~O 782 818 704 776 755 743 712 701 708

S

2
Nﬁ\N 7.64 984 769 9.05 9.18 890 784 772 187
C e b

o}
3 w J

H
)
4 @ﬁx)‘\@ 6.73 803 068 795 737 741 676 682 06.71

Oy
o
) ©@ ‘x)Lx’ @O 6.27 7.51 734 741 770 7.63 735 737 741

601 603 658 653 581 607 640 652 630

F

(e}
6 @ﬁI\JLNIH 6.49 7.51 6.91 727 7.51 7.40 6.96 6.95 7.01
o
7 @ﬁNJ\N'H 7.18 7.76 7.81 7.68 7.79 775 7.85 7.81 7.85
8 NC
@J\Nﬂ 7.82 7.66 7.64 7.47 8.06 7.92 7.73 7.70 7.81
O 1y
9 HO
jl,u 8.59 7.34 743 748 7.56 7.60 737 746 7.40
N N
071
10 o
fL,H 0.80 7.68 7.58 7.62 7.98 7.92 7.59 7.63 7.66
N N
@Jﬁa@
11 s
H‘Nﬁw 821 8.82 8.64 8.68 8.22 823 8.69 8.56 8.59
@Nb
NC CN

12 0 .
@m&ﬁ@ 7.96 8.93 841 8.72 8.73 866 845 841 845

13 1/_©§Z 9.04 921 8.81 8.89 8.73 8.64 893 876 887
9.31 9.53 8.88 9.46 926 9.25 8.85 888 884

O
14 e 0
-1

15 o=
N)L\l

10.05 9.48 9.77 9.46 9.61 9.59 982 978 983
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Table 1 (Continued)

Compound pKiy pKi (predicted)
No. Structure (exp.) 1 11 111 v \4 VI Vil VIII
6 e
\kf@f 951 953 993 954 985 982 997 996  10.01
@%x@
' e
Nkr@gz 982 9.73 1030 9.64 1055 1041 1040 1039 10.53
8 o
. x ; 885 980 939 1002 1033 1037 923 949 936
19 HON NH HN 7N/OH
ird 1070 941 1045 943 928 930 10.56 1037 1047
" vo s
1 1070 952 10.54 947 969 9.65 1068 1051 10.65
5e 11.00 990 11.18 1029 1030 1043 1114 1117 1112
22 HO\N* NH HaN N,(\H X
. I . 1022 983 1052 1021 1043 1053 1042 1057 1047
23 HyN NH2
@“&f@ 8.77 8.49 8.66 8.50 8.19 823 8.67 8.60 8.60
24 F F
IlzN@NiN@NHz 810 887 800 9.8 894 908 776 807 781
25 H‘('—N/H HN—m)
@i@ 831 898 882 868 837 831 895 873 885
26 e o
q 10.00 1032 993 972 9385 963 1018 9.88  10.13
27
Loy f ¢ §d 1022 956 974 969 949 956 969 972 9.6
O 1y
28 b 0 v
N&&‘N 10.00 10.14 979 1021 1008 10.12 971 980  9.72
o Ty
2 Ry NfLN/@N 10.52 9705 10.91 1038 10.05 1032 1072 10.89 10.68
W@N NHy
30 9
9790 985 10.12 10.36 1044 969 993  9.79

z
5

g }O
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Table 1 (Continued)

Compound pK, PKi (predicted)
No. Structure (exp.) 1 11 I v A4 VI VII VIl
H
31 H N-ch,

7.64 8979  8.68 9.08 8.20 8.34 8.60 8.58 8.47

e

x
E

10
32 o
@m*w@ 952 8538 875 846 843 840 881 872 878
o'y
33 HO OH
@i@ 7.92 8019 842 8.13 777 785 841 836 833
34 HOH,C CHOH
o
@ﬂN)LNﬁ@ 796 8261 826 876 756 7.87 802 815  7.86
35 NC
_@ﬁk 696 7713 778 7.66 802 796  7.82 783 787
36
1 825 7.934 826 7.93 829 824 830 830 835
37 o™
. i 785 7.891 786 7.84 844 835 788 795  8.00
18 b 8.64
j@iv,, 9.62 8.097 8.60 823 8.54 855 8.59 8.64
» . 2 8.85 8.055 845 8.1 869 864 847 853  8.56
40 i, 0, 942 8140 935 819 878 872 946 938  9.50
-
M < NiN,u 892 7.756 825 770  8.08 802 833 827 836
2 a
@NJN v 7.48 8481  7.66 8.19 8.12 8.03 771 1765 7.70
()H“’l );‘::
NC,
3 —@i 740 8503  7.61 828 8.07 802 761 759  7.59

i &i@ﬂ 9.19 9420 898 964 9.38 9.49 8.82 9.00 8.84

45 o
X 10 9.55 9.015 948 88 899 892 961 945 9.8
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Table 1 (Continued)
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Compound PKi pKi (predicted)
No. Structure (exp.) 1 II I v \4 Vi Vil vl
46 ¥
@xifcﬁ\x“ 10.00 9399 938 968 937 950 924 937 922
47 HC
@ﬂkrcgf 989 9.022 922 885 892 88 932 919 929
T
48 HN N
NUN/—Q 8.80 8695 861 858 826 825 866 855 858
49 H
10.00 9.847 9.87 10.17 10.13 10.24 972 991 9.76

37

Z>:o

4

a See Results and Discussion for the description of the models.

Table 2. Statistical Parameters Associated with Linear Regression Models 1-VI112 Constructed from Ecompi, Esow[l], BSApol,
BSAnonpol, and BSAT. Descriptors for the Training Set of THP Compounds

descriptors

model r re? Fb SEE® Ecompl Eson[l] BSARq BSANonpol BSATotal®
I 0.56 0.52 59.0 0.83 v
" 0.84 0.82 121.0 0.50 v v
1 0.60 0.57 35.0 0.79 v v
v 0.67 0.63 47.0 0.72 v v
Vv 0.68 0.62 32.0 0.72 v v
Vi 0.85 0.83 84.0 0.50 v v v
VIl 0.84 0.82 80.0 0.51 v v v
VI 0.85 0.84 63.0 0.50 v v v

a See Results and Discussion for description of the models. ° F ratio: defined as r?/(1 — r?), representing the ratio of properties explained
by the QSAR model to those not explained by it. ¢ SEE: standard error of estimate. 9 BSAtotal = BSApo + BSAnonPol.

coordinate system. The grid spacing was set to 2 A units in
all x, y, and z directions, and a C sp® atom with a formal charge
of +1 and a van der Waals radius of 1.52 A served as the probe.
The steric term represents the van der Waals (dispersion-like)
interactions, while the Coulombic term represents the elec-
trostatic interactions for which a distance-dependent dielectric
expression € = ¢R;jj with €o = 1.0 was adopted. The maximum
field values were truncated to 30 kcal/mol for the steric field
energies and +£30.0 kcal/mol for the electrostatic field energies.
To improve efficiency and to reduce “noise”, a column filter
was employed to exclude the columns with a variance smaller
than 2.0 kcal/mol.

Partial least-squares (PLS) regression?” was employed to
correlate these field values with the observed pK; values. The
“leave-one-out” cross-validation procedure?® was repeated on
the training-set compounds to yield the highest cross-validated
r? (ro?) and to determine the optimum number of principal
components (PCs). The PLS analysis was then repeated
without cross-validation to obtain a predictive model and
associated conventional r? values from which the CoMFA
coefficient contour plots for the steric and electrostatic poten-
tials were generated. Linear regression analysis in all cases
was carried out using the QSAR module of the Sybyl 6.6
program.?®

Results and Discussion

A training set consisting of 49 THP inhibitors was
selected from a recent experimental study by De Lucca
et al. for which values of the inhibition constant (K))
were determined.?%% These inhibition constants (K))
were converted to logarithmic pK; values for the regres-
sion studies. The molecular structures of these com-

pounds are shown in Table 1. Altogether, 17 QSAR
models (designated by Roman numeral) were developed
using different combinations of receptor-based and
ligand-based descriptors, which include Ecompi, Esonv[l],
BSAp,, BSAnonrol, and CoMFA steric and electrostatic
fields. A test set of compounds was selected from the
data set to validate the predictive ability of the various
regression models. This test set comprised 11 THPs
(18% of total data set) that included compounds exhibit-
ing poor, moderate, and high activity.

Individual linear regression models were first con-
structed between pK; and Ecmp plus the following
combinations of other calculated descriptors: (1) “none”,
i.e., Ecompt 0nly, (11) Eso[1], (111) BSApg1, (1V) BSAnonpol,
(V) BSApo and BSAnonpal, (V1) Eson[1] @and BSApe, (VII)
Esonv[l] and BSAnonpol, and (VI Eson[1], BSARq, and
BSAnonpol- Predicted inhibition constants (pK;) for the
models are reported in Table 1. The correlation between
pK; and Ec¢mpi (Model 1) was mixed in terms of statistical
performance measures. The model’s internal predictive
ability (r.,2 = 0.52) was above the ry? > 0.50 criterion
of acceptability; however, its goodness of fit (r2 = 0.56)
to the experimentally observed pK;, values fell well below
the corresponding r2 = 0.90 criterion. Inclusion of Egg-
[1] (model 11) produced sharp improvements in both r,?
(0.82) and r? (0.84), indicative of the importance of
inhibitor solvation effects for these inhibitors. Compared
with model I, slight improvements were obtained for
model 111 (r,,?> = 0.57, r2 = 0.60), which includes BSAql,
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for model IV (r,2 = 0.63, r2 = 0.67), which includes
BSAnonpor, and for model V (re,2 = 0.62, r2 = 0.68), which
includes both BSAp, and BSAnoenpol. Models VI, VII, and
VI, which correspond respectively to models 111, 1V,
and V with the addition of Eg[1], displayed significant
improvements in statistical quality (ro? > 0.82, r? >
0.84) in every case. These improvements primarily
reflect the inclusion of Esq[1] alone, since it is evident
that the statistical quality of models VI-VIII (which
also include the BSA terms) is virtually identical to that
of model 11, which includes Esy[1] but excludes any BSA
terms.

A summary of the statistical parameters for models
I-VIII is given in Table 2. Comparison of these models
reveals that improved predictive ability (high r¢2) is
obtained primarily by inclusion of Esov[l1] beyond Ecompi.
The strong linear correlation observed for models 11, VI,
VIl, and VIII indicates that Ego[l] and, to a lesser
degree, both BSApy and BSAnonpol are valuable factors
for consideration in predicting the binding affinity for
this series of HIV PR inhibitors. By virtue of their ease
of computation, they would also work well as simple
terms in “docking and scoring” routines used to rank
the free energy of binding of a ligand for a protein of
known three-dimensional (3D) structure.

The pK, values for the test set of 11 THP inhibitors
were predicted using models I-VIII. The best agree-
ment between the experimentally observed and pre-
dicted pK; values was obtained for models 11, VI, VII,
and VIII. Models VI-VIII and Il were nearly equivalent
in terms of their statistical quality (r?, r?) and perfor-
mance in predicting the test-set compounds, providing
further evidence of the significance of the solvation term
Esonv[1]. For the sake of brevity, results for the test-set
compounds are presented only for model 11 along with
models | and V for reference (Table 3).

The differences (i.e., residuals) between the corre-
sponding experimentally observed and predicted pK;
values from models Il, VI, VII, and VIII are acceptably
small (<1.5 log units) for all test-set compounds with
the exception of compounds 55 and 56, where model 11
(as well as models VI and VIlI, not included in Table 3)
overestimates the actual pK, values by >2.25 log units.
Nevertheless, these models are consistent with experi-
mental results in predicting high pK; values for these
two compounds. It is interesting to note that both model
IV (r2 = 0.67; ro,® = 0.63; not included in Table 3) and
model V (r2 = 0.62; r,2 = 0.68), although inferior to
model Il (r2 = 0.84; r,,2 = 0.82) in terms of statistical
quality, were superior to model I1 in terms of predicting
the pK, values for compounds 55 and 56. Model 1V,
which includes only the BSAnonpor term besides Ecompl,
predicted pK, values of 10.89 for compound 55 (pK;-
[exptl] = 10.10) and 11.59 for compound 56 (pK;[exptl]
= 10.52). Model V, which includes the BSAnonpo and
BSAp terms besides Ecompi, predicted pK; values of
10.83 for compound 55 and 11.51 for compound 56.
These results suggest that models that do not include
Eson[1], but do include the BSA terms, more accurately
predict the pK, values for these two compounds. A
plausible explanation is that the magnitude of the Egg-
[1] term is overemphasized for these two compounds,
both of which are structurally unique in some ways
compared with the other THPs in this series. In
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Table 3. Predicted pK, Values for the Test-Set Inhibitors
Using Models I, I, and V,2 from Regressions Involving Ecompl,
ESO|V[[I]1 BSApon BSANonPuI

Compound pKi pK; (predicted)
No. Structure (exp.) 1 11 N
“@ﬁifQ"
50 N\©/\Hu_ “ 1070 949 973 959
CH
a
51 O~ A O 634 860 727 731
52 NJOLN 700 997 830 957
NC CN
53 O~ 785 893 841 866
F@%"/_\@
HaN Nlli
54 F@NiN@F 9.60 921 830 947
55 L p 1010 11.40 12.66 10.83
O g.)\f/?\‘/_@ |
O .
56 NHH (S 1052 1122 12.84 1151
o ):: 0 j o
NJJ\N
57 8 OV 36 810 836 8w
LT . . .
“\NJJ\N
v 0 &
58 H,Q %NLNr@ 10.10 884 913 873
on b C
o)
59 @i@ 1022 889 912 869
/OH
N
60 1070 930 941 922

i
4

a See Results and Discussion for the description of the models.

particular, both compounds contain elongated, sterically
bulky substituents located on either side of their sym-
metry axis that incorporate the Ph—NH—-C(=0)—Ar
moiety, where Ar represents the pyridine ring in 55 and
the thiophene ring in 56. The extended delocalization
of these conjugated sequences could affect the true
solvation energy and/or the GB/SA treatment of solva-
tion for these two compounds, thus leading to the
apparent overestimations in Egy[l]. This issue is a
subject for further investigation. For example, it might
be informative to explore other solvation models besides
the GB/SA solvation model employed in the present
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Figure 1. Plot of training-set THP inhibitors in 3D descriptor
space according to their calculated values of Ecomp (X axis),
BSAeq (Y axis), and BSAnenral (Z axis). Inhibitory activity was
divided into three categories: high activity (pK; = 8.5), mod-
erate activity (7.0 < pK, < 8.5), and low activity (pK, < 7.0).
Each THP inhibitor was color-coded according to the following
scheme: high activity (green), moderate activity (yellow), and
low activity (red). Note that most of the inhibitors were
separated into three distinct clusters according to activity.

study in order to determine whether the present results
are dependent on the choice of solvation model.

To further explore the utility of the receptor-based
descriptors Ecompl, BSApo, and BSAnonpol for predicting
inhibitor binding affinity, each THP inhibitor of the
training set was plotted in 3D descriptor space described
by Ecompl (X axis), BSApq (Y axis), and BSAnonpol (Z axis)
using the statistical package SYSTAT.3! Inhibitory
activity was divided into three categories: high activity
(pK; = 8.5), moderate activity (7.0 < pK; < 8.5), and
low activity (pK; < 7.0). In the 3D graph (Figure 1), each
THP inhibitor was color-coded according to the following
scheme: high activity (green), moderate activity (yel-
low), and low activity (red). Within this 3D descriptor
space, it is seen that most of the inhibitors were
separated into three distinct clusters according to activ-
ity. The only exceptions are compounds 9 and 41,
perhaps because of their missing P2’ substitutions,
which may in turn explain why Ecmp Was underesti-
mated in these two cases. This clustering analysis
provides evidence that Ecomp, BSApo, and BSAnonpol
might prove valuable as descriptors in classification
studies for rapid screening of large compound libraries
to identify promising candidates.

Various “enhanced” 3D-QSAR models were con-
structed to determine if, and to what extent, the
inclusion of Ecompi, BSApo, BSANonrol, and Esoi[l] as
additional descriptors to the default CoMFA steric—
electrostatic fields would improve the statistical and
predictive performance of the resultant 3D-QSAR mod-
els. Beginning with the conventional COMFA-PLS model
(model IX), eight such 3D-QSAR models were built from
the training-set THP compounds by addition of the
following descriptors: (model X) Ecompi; (model XI)
BSAp; (model X11) BSAnonpor; (Model XI111) BSAp and
BSAnonpol; (Model XI1V) Esqv[1]; (model XV) Esqiv[1] and
BSAp; (model XVI) Esoi[1] and BSAnonror; and (model
XVI) Eson[l], BSApo, and BSAnonpo. The 3D-QSAR
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models were constructed as described above using PLS
analysis accessed through the Sybyl 6.6 program.?®

The corresponding predicted and experimentally ob-
served pK,; values of the training-set compounds for
models IX—XVII are listed in Table 4, and various
statistical parameters are summarized in Table 5.
Inclusion of Ecompr alone as an additional descriptor to
the CoMFA fields (viz., model X) resulted in a moderate
improvement in internal predictive ability (i.e., from rg?
= 0.58 for model IX to re? = 0.67 for model X). Models
XIV=XVII were uniformly superior among these 3D-
QSAR models in terms of every calculated measure of
statistical quality including goodness of fit (r2 = 0.96),
internal predictive ability (r.,® = 0.77), and fewest
number of PCs (two to four). As found above when
comparing models I-VI11, inspection of these 3D-QSAR
models (models IX—XVII) reveals that inclusion of Eso-
[11 as an additional descriptor led to this dramatic
improvement in statistical quality. This is demonstrated
most clearly by comparing model IX (r,2 = 0.58), which
contained only the default COMFA steric—electrostatic
field descriptors, with model X1V (r,,2 = 0.80), which
included the addition of only Esoy[1]. Similar improve-
ment (i.e., re,2 ~ 0.80) was found for models XV—XVII,
which include the various BSA terms besides Egq[1] as
additional descriptors. At the same time, inclusion of
the BSA terms by themselves did little or nothing to
improve the statistical quality of the 3D-QSAR models.
This is apparent by comparing model IX (i.e., COMFA
fields alone) with models XI—=XI11 in which the various
BSA terms were added sequentially and then cumula-
tively (Table 5).

Models IX—XVII were further validated by predicting
the pK; values of the 11 test-set compounds (Table 6).
Small residuals between the predicted and experimen-
tally observed pK, values were obtained in all cases,
thus strengthening our confidence in the predictive
ability of these models. Model IX, which contained only
the default CoMFA field descriptors, overestimated the
pK; value for compound 51. Models XIV—XVII, all of
which share in common the addition of the Egq[1] term,
predict pK, values for this compound that are in closer
agreement with experimental values. Somewhat para-
doxically, models XIV—XVII tended to overestimate the
pK, values for the highly active test-set compounds 55
and 56. As discussed earlier with respect to models I,
VI, and VIII, which similarly overestimated pK;, for the
same two compounds, it is plausible that the unique
characteristics of these molecules’ structure and/or the
GB/SA solvation model may play a role. In this context,
it is worth noting that the pK, values for these two
compounds are more accurately predicted by models IX
and X—XII1 in which the Eg[1] term is absent.

Conclusions

Results from the present study demonstrate the
utility of ligand-based and receptor-based computed
descriptors as predictors of ligand—receptor binding
affinity. Calculated values of inhibitor—receptor com-
plexation energy (Ecompl), alone and together with vari-
ous combinations of the inhibitor solvation energy
Esonv[1] @and both polar and nonpolar buried surface areas
(BSApo and BSAnonpol, respectively), were found to
perform well (ro,2 > 0.5) in predicting the observed
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Table 4. Inhibition Constants (pK;) from Experiment and from Linear Regression Models IX—XVII? Involving COMFA Fields, Ecompi,
Esolv, BSApo, and BSAnonrol for the Training-Set Inhibitors

pK; (predicted)

compd® pK; (exptl) IX X X1 Xl X1 X1V XV XVI XVII
1 7.82 8.14 8.12 8.14 8.34 8.04 7.87 7.79 7.89 7.80
2 7.64 7.36 7.64 7.57 7.38 7.47 7.40 7.27 7.43 7.45
3 6.01 5.94 6.16 6.05 6.06 6.04 5.99 6.24 6.05 6.20
4 6.73 6.64 6.66 6.85 6.75 6.84 6.73 6.59 6.69 6.57
5 6.27 6.72 6.48 6.80 6.69 6.72 6.74 6.69 6.65 6.50
6 6.49 7.20 7.08 7.20 7.23 7.34 7.29 7.33 7.22 7.33
7 7.18 7.15 7.32 7.35 7.19 7.46 7.59 7.66 7.61 7.75
8 7.82 8.03 7.92 7.82 7.80 7.58 8.09 7.87 7.96 7.82
9 8.59 7.20 7.08 7.33 7.27 7.54 7.16 6.99 6.99 7.13

10 6.80 8.04 8.16 8.29 8.04 8.14 8.46 8.31 8.31 8.27
11 8.21 7.96 7.96 7.87 7.99 8.00 7.86 7.86 7.86 8.20
12 7.96 7.58 7.51 7.32 7.42 7.39 7.62 7.58 7.58 7.52
13 9.04 8.79 8.83 8.70 8.75 8.69 8.71 8.61 8.61 8.79
14 9.31 9.23 9.45 9.33 9.29 9.54 9.18 9.07 9.07 9.19
15 10.05 9.81 9.84 9.60 9.63 9.48 9.75 9.88 9.88 9.77
16 9.51 9.99 9.82 9.88 10.02 9.90 9.83 9.84 9.84 9.80
17 9.82 9.88 9.82 9.70 9.80 9.66 9.89 9.88 9.88 9.77
18 8.85 9.10 9.17 9.08 9.02 9.19 8.99 9.01 9.01 8.93
19 10.70 10.69 10.66 10.55 10.51 10.60 10.83 10.81 10.81 10.86
20 10.70 10.76 10.71 10.56 10.62 10.63 10.60 10.51 10.51 10.56
21 11.00 10.77 10.84 11.07 11.133 10.85 10.97 10.99 10.99 10.82
22 10.22 10.22 10.23 10.37 10.26 10.21 10.42 10.37 10.37 10.26
23 8.77 8.83 8.88 8.95 8.96 9.03 8.86 8.84 8.84 8.89
24 8.10 7.96 7.88 7.78 7.96 7.94 7.99 8.10 8.10 7.93
25 8.31 8.56 8.60 8.60 8.62 8.63 8.75 8.65 8.65 8.82
26 10.00 10.16 10.24 10.30 10.16 10.16 9.98 10.03 10.03 9.97
27 10.22 10.34 10.37 10.33 10.45 10.43 10.48 10.61 10.61 10.56
28 10.00 9.90 9.96 9.99 9.87 10.15 9.94 9.90 9.90 9.99
29 10.52 10.63 10.66 10.57 10.69 10.64 10.53 10.55 10.55 10.65
30 9.39 9.22 9.19 9.13 9.19 9.11 9.11 9.19 9.19 9.14
31 7.64 7.69 7.57 7.50 7.63 7.45 7.60 7.76 7.76 7.74
32 9.52 9.03 8.96 9.07 9.11 9.12 9.21 9.20 9.20 9.12
33 7.92 7.72 7.91 7.97 7.85 7.96 8.07 8.09 8.09 8.07
34 7.96 8.17 8.06 8.01 8.14 8.12 7.85 7.98 7.98 7.84
35 6.96 7.71 7.69 7.71 7.65 7.65 7.72 7.73 7.73 7.76
36 8.25 8.42 8.42 8.33 8.28 8.23 8.27 8.31 8.31 8.29
37 7.85 8.10 8.04 7.89 7.98 7.86 7.70 7.68 7.68 7.67
38 9.62 9.29 9.29 9.53 9.46 9.48 9.56 9.54 9.54 9.54
39 8.85 8.81 8.78 8.89 8.95 8.88 8.99 8.92 8.92 8.98
40 9.42 9.49 9.49 9.19 9.29 9.40 9.18 9.13 9.13 9.27
41 8.92 8.97 8.98 8.92 9.00 8.95 8.64 8.71 8.71 8.69
42 7.48 7.77 7.84 7.64 7.79 7.67 7.71 7.72 7.72 7.63
43 7.40 7.69 7.57 7.66 7.83 7.60 7.46 7.54 7.54 7.47
44 9.19 8.99 9.09 9.24 9.07 9.06 9.10 9.12 9.12 9.17
45 9.55 9.51 9.49 9.32 9.16 9.62 9.69 9.55 9.55 9.81
46 10.00 10.05 10.15 10.30 10.03 10.27 10.05 10.07 10.07 10.02
47 9.89 9.77 9.62 9.61 9.74 9.21 9.60 9.69 9.69 9.54
48 8.80 8.84 8.75 8.78 8.79 8.89 8.95 8.94 8.94 8.88
49 10.00 9.99 9.97 10.16 10.00 10.03 10.13 10.10 10.10 10.13

a See Results and Discussion for the description of the models. ? See Table 1 for the structures of compounds.

Table 5. Statistical Parameters Associated with Linear Regression Models IX—XVI1I2 Constructed from CoMFA Fields Plus Various
Combinations of Ecompl, Esolv[l], BSApol, BSANonrol, and BSATaar Descriptors for the Training Set of THP Compounds

descriptors added to CoMFA fields

model r2 re? no. of PCs Fb SEE® Ecompl Eson[l] BSAkI BSANonpol BSATstal®
1X 0.96 0.58 9 94.0 0.29

X 0.96 0.67 9 103.0 0.28 v

X1 0.95 0.60 8 79.0 0.31 v v

X1 0.95 0.51 9 75.0 0.32 v v

XI11 0.94 0.56 9 64.0 0.35 v N
XIV 0.97 0.80 2 141.0 0.24 v v

XV 0.96 0.78 3 103.0 0.28 v v v

XVI 0.97 0.79 2 121.0 0.26 v v v

XVII 0.96 0.77 4 100.0 0.28 Vv v v

a See Results and Discussion for description of the models. ° F ratio: defined as r?/(1 — r?), representing the ratio of properties explained
by the QSAR model to those not explained by it. ¢ SEE: standard error of estimate. ¢ BSAtotas = BSApol + BSAnonpol.

inhibition constants (as pK,) for this series of THP
HIV-1 protease inhibitors (models 1-VIII). The most
dramatic improvement in predictive ability (ro,? > 0.8)
was gained by inclusion of Egy[I] (models 11, VI=VIII).

Esov[l] was demonstrated to serve as a justified and
computationally thrifty surrogate for Esqy (See eq 6) in
capturing the salient features of solvation and desolva-
tion effects. Since Eson[l] pertains exclusively to the
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Table 6. Predicted pK; Values for the Test-Set Inhibitors
Using Models IX, X, XIII, XIV, and XVI1I2 from Regressions
Involving CoMFA Fields, Ecompi, Esoiv[1], BSApol, and BSAnonpol

pK, pK; (predicted)
compd®  (exptl) I1X X X1 X1V XVII
50 10.70 10.37 10.34 1055 10.65 10.63
51 6.34 8.29 8.77 8.01 7.39 7.71
52 7.00 7.96 8.53 7.92 7.69 7.59
53 7.85 7.89 7.72 7.82 7.61 7.68
54 9.60 8.99 9.28 9.40 8.39 8.34
55 10.10 10.04 1116 1049 1219 12.70
56 10.52 10.22 1098 1081 12.28 12.55
57 7.36 7.96 8.15 8.73 8.90 9.20
58 10.10 8.82 9.06 9.18 9.29 9.43
59 10.22 9.08 8.69 8.79 8.94 8.94
60 10.70 9.61 9.64 9.63 9.15 9.02

a See Results and Discussion for the description of the models.
b See Table 3 for the structures of the test-set compounds.

small-molecule ligand and judiciously neglects the
large protein molecule, its computation even for a
sizable library of compounds would be straightforward
and fast. The advantages of Eg . [l] over Egyy in terms
of speed, convenience, and accessibility suggest its
utility in “docking and scoring” schemes that are
employed in drug-design programs for high-throughput
screening of massive small-molecule libraries in search
of new leads.

Consistent with our findings from a similar study on
a separate class of HIV-1 protease inhibitors,’® the
present study demonstrates the utility of Ecompi as a
descriptor for assessing drug-receptor binding affinity.
Computation of E¢mp requires knowledge of the three-
dimensional (3D) structure of the receptor or, preferably,
the ligand—receptor complex. Since it is a receptor-based
descriptor, calculation of Ecompi iS more computer-
intensive than Eg[l] and sometimes, such as in cases
where the structure of the receptor is unknown, inac-
cessible. As shown in both the present study and the
aforementioned study,'® calculation of Ecompl even for
moderately large data sets (<500 compounds) can be
performed in a fast and efficient manner on a single
workstation.

Correlation of pK,; with the various BSA terms (polar,
nonpolar, total) was less apparent than with Ecomp and
Esn[1]. This conclusion is supported by comparison of
model | with models I11-V (Table 2), where it is seen
that the statistical parameters r2 and r2 improve only
marginally by addition of the BSApoy, BSAnonpol, OF
BSATotal terms to Ecompi. Nevertheless, addition of the
BSA terms did improve the predictive ability of these
models for several of the test-set compounds (Table 3).
For example, the pK; value (exptl = 6.34) for the weakly
active compound 51 was more accurately predicted by
model V (7.31) than by model | (8.60).

The correlation of pK; with Esqy[l] and, to a much
lesser degree, the BSA descriptors for this series of
THP inhibitors are reflected in the CoMFA models
when these properties were included as additional
descriptors to CoMFA's default steric—electronic field
descriptors (models IX—XVII). The addition of Esu[l]
values augmented the statistical quality of these 3D-
QSAR models dramatically. For example, the statistical
quality of model X1V (r,? = 0.80, using only two PCs)
is vastly superior to that of model IX (r,2 = 0.58, using
nine PCs).
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